


Mathematical Fundamentals: Group

Definition (Group)

For a set G and operator o, the pair (G, o) is a group if it satisfies
the following properties:

@ Closure: For all a,b € G, we have aob e G

@ Associativity: For all a, b, c € G we have
(aob)oc=ao(boc)

o I|dentity: There exists e € G such that for all a € G we have:
eoa=aoe=a

@ Inverse: For every a € G, there exists b € G such that we
have: aob=boa=c¢e
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Example of Groups

o Let G = {0,1} and o be the XOR operator

@ Let G = Z and o be the + operator

o Let G = Q* (i.e., the set of all rationals except 0) and o be
the x operator

o Let G=7,=1{0,...,n— 1} and o be the addition mod n
operator

o Let G =7 =1{1,...,p—1} (for prime p) and o be the
multiplication mod p operator

@ Let G be the set of all full-rank n x n matrices with rational
entries and o be the matrix multiplication operator

o Given any group (G, o) we can define another group (G*, o)
where G* is a A-long vector with entries in G, and oM is a
component-wise application of o

Note that we have seen examples where G need not be finite and
the o operator need not be commutative (i.e., ao b= bo a).
Groups that additionally satisfy commutativity are called Abelian
Groups
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One-time Pad

Let (G, o) be a group
Suppose K=M=C=G
Gen(G) outputs sk drawn uniformly randomly from G

Ence(m) = mosk

Decgk(c) = c oinv(sk), where inv(sk) is the inverse of sk with
respect to the o operator

The proof that one-time pad is perfectly secure is left as an exercise
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Thinking Exercises

Proceed by defining meaningful groups (G, o) to obtain perfectly
secure encryption schemes for the following:

o M={ab,...,z}*
o M={0,1}*
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First Basic Observation

Henceforth, we will restrict our study to encryption scheme that
always correctly decrypt, that is:

Pr[Decg(Encek(m)) = m] =1

For a perfect encryption scheme

IC| = M|

Proof:
@ Fix any sk € K.

e For any distinct m, m" € M we cannot have Encg(m) and
Encek(m’) produce the same cipher text c. Otherwise, Bob will

not be able to correctly decrypt with probability 1 when it gets
(sk, c).
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Second Basic Observation

For a perfect encryption scheme

Kl > M|

Proof:

@ Fix a ciphertext ¢

o For a message m(Y) € M let T(H) = {sk(l), e ,sk(il)} be the
set of all distinct secret keys such that m(1) encrypts to ¢

o Similarly, for a message m(® € M let
7@ = {sk(i1+1), ... ,sk(iz)} be the set of all distinct secret
keys such that m®® encrypts to ¢

@ In general, for a message m(k) € M let

T(k) — {sk(’.k*ﬁl), ey sk(ik)} be the set of all distinct secret

keys such that m(k) encrypts to ¢
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Proof Continued

We make two claims. First claim:

Let M(c) be the set of all messages that encrypt to ¢ under some

sk. Then |[M(c)| = |M]|.

Proof:
o If possible let m € M such that m & M(c)
@ Let M be a uniform distribution over M
@ Now PriM =m|C =¢| =0, but Pr[M =m] =1/ |M| #0

@ So, perfect security is violated
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Proof Continued

Second claim:

For k # k', we have T(K) 0 T(K) = ¢,

Proof:

@ Fix c and suppose on the contrary that there exists
sk e T 0 T(K)

o Consider the case when Bob receives the secret-key sk and ¢
as the ciphertext

@ In this case, Bob cannot always correctly decrypt the message
as both m(¥) and m(¥") are valid decryptions of the ciphertext
¢ when the secret-key is sk
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Proof Continued

Using the two claims we do the following argument:
o Let M ={mW ... mH

o Then, every set T ... T(5) is non-empty (by first claim).
Formally, it > 1, (b — i) > 1, ..., (is — is_1) > 1
o Further, T(M, ... T(5) are distinct (by second claim) and

their union has size < |K]|
e Consider the following manipulation:

S
1M|:5:21
k=1

Mm

<Y (i — ik-1)

x
Il

1

— ~.

S
Kl
@ This completes the proof that || > | M|
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Food for Thought

@ Observe that One-time Pad achieves |K| = |[M| = |C|, thus
the inequalities in the theorems are tight and can be
simultaneously achieved

o Note that the equality in the second theorem is achieved if and
only if (ix — ix—1) =1 and TM U--. U TG = K. This
observation is extremely important will be used extensively in
the next theorem'’s proof
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Shannon’'s Theorem

Theorem (Shannon’s Theorem)

An encryption scheme is perfectly secure with |KC| = |[M| = |C| if
and only if

e Gen samples sk uniformly at random from K, and

@ For every m € M and c € C, there is a unique sk such that
Ence(m) = ¢
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First Direction

Suppose Gen samples sk uniformly at random from X and for every
m € M and ¢ € C, there is a unique sk such that Encg(m) = c.
We want to show that this scheme is perfectly secure.

e First guarantee implies: Pr[sk = sk] = 1/|K], for all sk € K

@ Fix a ¢ and m. Second guarantee states that there is a unique
secret-key under which m is encrypted as c. Let this secret-key
be sk c. Now,

Pr[C =¢|M = m]| =Pr[C =c A M= m]/Pr[M = m]
= Pr[sk = skpm,c A M = m]/Pr[M = m]
= Pr[sk = sk c] - Pr[M = m]/ Pr[M = m]
= Pr[sk = sk ]

@ By first guarantee, we can conclude that
Pr[C = ¢[M = m] =1/ |K]|, for all ¢, m and, hence, the
scheme is perfectly secret
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Second Direction

Suppose we are given a perfectly secure encryption scheme such
that || = M| =C|.
@ Fix a ciphertext ¢

@ Because of the tightness of the inequality it is clear that
| T()| =1, for all k (we have already argued this earlier). So,
for every m, c there is a unique sk, . under which m is
encrypted as c. This proves the part (2) of the implication

@ Further, tightness of the inequality implies that
TOU-..u TE) = K, where S = |M|

@ Let us consider the following probability for any m € M:
Pr[C =c¢|M = m]| =Pr[C =c A M= m|/Pr[M = m]
= Pr[sk = skyyc A M = m]/Pr[M = m]
= Pr[sk = skpm ¢] - Pr[M = m]/ Pr[M = m]
= Pr[sk = sk (]
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Second Direction Continued

@ Recall that for perfect secrecy, we must have
Pr[C = ¢|M = m] identical for all m € M

@ So, for every m € M, we get Pr[sk = sk, ] is identical
o Recall that M = {m() ... m(5)} and
{Skm(l),c’ Ce ,Skm(5)7c} = IC

@ So, we get that Pr[sk = sk ] = 1/|K|. This proves the part
(1) of the implication
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Food for Thought

@ What information is leaked when two messages are encrypted
using the same secret-key in one-time pad?

For example, for two different message (m, m’), their
encryptions are (¢, c’), where c = mosk and ¢/ = m’ o sk

So, we can compute ¢ o inv(c’) to compute m o inv(m’)

Is any additional information leaked?

How to argue that “no additional information” is leaked?
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