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Mathematical Fundamentals: Group

Definition (Group)

For a set G and operator ◦, the pair (G , ◦) is a group if it satisfies
the following properties:

Closure: For all a, b ∈ G , we have a ◦ b ∈ G

Associativity: For all a, b, c ∈ G we have
(a ◦ b) ◦ c = a ◦ (b ◦ c)
Identity: There exists e ∈ G such that for all a ∈ G we have:
e ◦ a = a ◦ e = a

Inverse: For every a ∈ G , there exists b ∈ G such that we
have: a ◦ b = b ◦ a = e
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Example of Groups

Let G = {0, 1} and ◦ be the XOR operator
Let G = Z and ◦ be the + operator
Let G = Q∗ (i.e., the set of all rationals except 0) and ◦ be
the × operator
Let G = Zn = {0, . . . , n − 1} and ◦ be the addition mod n
operator
Let G = Z∗p = {1, . . . , p − 1} (for prime p) and ◦ be the
multiplication mod p operator
Let G be the set of all full-rank n × n matrices with rational
entries and ◦ be the matrix multiplication operator
Given any group (G , ◦) we can define another group (Gλ, ◦λ)
where Gλ is a λ-long vector with entries in G , and ◦λ is a
component-wise application of ◦

Note that we have seen examples where G need not be finite and
the ◦ operator need not be commutative (i.e., a ◦ b = b ◦ a).
Groups that additionally satisfy commutativity are called Abelian
Groups
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One-time Pad

Let (G , ◦) be a group
Suppose K =M = C = G

Gen(G ) outputs sk drawn uniformly randomly from G

Encsk(m) = m ◦ sk
Decsk(c) = c ◦ inv(sk), where inv(sk) is the inverse of sk with
respect to the ◦ operator

The proof that one-time pad is perfectly secure is left as an exercise
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Thinking Exercises

Proceed by defining meaningful groups (G , ◦) to obtain perfectly
secure encryption schemes for the following:

M = {a, b, . . . , z}λ

M = {0, 1}λ
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First Basic Observation

Henceforth, we will restrict our study to encryption scheme that
always correctly decrypt, that is:

Pr[Decsk(Encsk(m)) = m] = 1

Theorem
For a perfect encryption scheme

|C| > |M|

Proof:
Fix any sk ∈ K.
For any distinct m,m′ ∈M we cannot have Encsk(m) and
Encsk(m′) produce the same cipher text c . Otherwise, Bob will
not be able to correctly decrypt with probability 1 when it gets
(sk, c).
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Second Basic Observation

Theorem
For a perfect encryption scheme

|K| > |M|

Proof:
Fix a ciphertext c

For a message m(1) ∈M let T (1) =
{
sk(1), . . . , sk(i1)

}
be the

set of all distinct secret keys such that m(1) encrypts to c

Similarly, for a message m(2) ∈M let
T (2) =

{
sk(i1+1), . . . , sk(i2)

}
be the set of all distinct secret

keys such that m(2) encrypts to c

In general, for a message m(k) ∈M let
T (k) =

{
sk(ik−1+1), . . . , sk(ik )

}
be the set of all distinct secret

keys such that m(k) encrypts to c
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Proof Continued

We make two claims. First claim:

Claim
LetM(c) be the set of all messages that encrypt to c under some
sk. Then |M(c)| = |M|.

Proof:
If possible let m ∈M such that m 6∈ M(c)

Let M be a uniform distribution overM
Now Pr[M = m|C = c] = 0, but Pr[M = m] = 1/ |M| 6= 0
So, perfect security is violated
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Proof Continued

Second claim:

Claim

For k 6= k ′, we have T (k) ∩ T (k ′) = ∅.

Proof:
Fix c and suppose on the contrary that there exists
sk ∈ T (k) ∩ T (k ′)

Consider the case when Bob receives the secret-key sk and c
as the ciphertext
In this case, Bob cannot always correctly decrypt the message
as both m(k) and m(k ′) are valid decryptions of the ciphertext
c when the secret-key is sk
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Proof Continued

Using the two claims we do the following argument:
LetM = {m(1), . . . ,m(S)}
Then, every set T (1), . . . ,T (S) is non-empty (by first claim).
Formally, i1 > 1, (i2 − i1) > 1, . . . , (iS − iS−1) > 1
Further, T (1), . . . ,T (S) are distinct (by second claim) and
their union has size 6 |K|
Consider the following manipulation:

|M| = S =
S∑

k=1

1

6
S∑

k=1

(ik − ik−1)

= iS

6 |K|

This completes the proof that |K| > |M|
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Food for Thought

Observe that One-time Pad achieves |K | = |M| = |C |, thus
the inequalities in the theorems are tight and can be
simultaneously achieved
Note that the equality in the second theorem is achieved if and
only if (ik − ik−1) = 1 and T (1) ∪· · · ∪ T (S) = K. This
observation is extremely important will be used extensively in
the next theorem’s proof
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Shannon’s Theorem

Theorem (Shannon’s Theorem)

An encryption scheme is perfectly secure with |K| = |M| = |C| if
and only if

Gen samples sk uniformly at random from K, and
For every m ∈M and c ∈ C, there is a unique sk such that
Encsk(m) = c
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First Direction

Suppose Gen samples sk uniformly at random from K and for every
m ∈M and c ∈ C, there is a unique sk such that Encsk(m) = c .
We want to show that this scheme is perfectly secure.

First guarantee implies: Pr[sk = sk] = 1/ |K|, for all sk ∈ K
Fix a c and m. Second guarantee states that there is a unique
secret-key under which m is encrypted as c . Let this secret-key
be skm,c . Now,

Pr[C = c |M = m] = Pr[C = c ∧M = m]/Pr[M = m]

= Pr[sk = skm,c ∧M = m]/Pr[M = m]

= Pr[sk = skm,c ] · Pr[M = m]/Pr[M = m]

= Pr[sk = skm,c ]

By first guarantee, we can conclude that
Pr[C = c |M = m] = 1/ |K|, for all c ,m and, hence, the
scheme is perfectly secret
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Second Direction

Suppose we are given a perfectly secure encryption scheme such
that |K| = |M| = |C|.

Fix a ciphertext c
Because of the tightness of the inequality it is clear that∣∣T (k)

∣∣ = 1, for all k (we have already argued this earlier). So,
for every m, c there is a unique skm,c under which m is
encrypted as c . This proves the part (2) of the implication
Further, tightness of the inequality implies that
T (1) ∪· · · ∪ T (S) = K, where S = |M|
Let us consider the following probability for any m ∈M:

Pr[C = c |M = m] = Pr[C = c ∧M = m]/Pr[M = m]

= Pr[sk = skm,c ∧M = m]/Pr[M = m]

= Pr[sk = skm,c ] · Pr[M = m]/Pr[M = m]

= Pr[sk = skm,c ]
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Second Direction Continued

Recall that for perfect secrecy, we must have
Pr[C = c |M = m] identical for all m ∈M
So, for every m ∈M, we get Pr[sk = skm,c ] is identical
Recall thatM = {m(1), . . . ,m(S)} and{
skm(1),c , . . . , skm(S),c

}
= K

So, we get that Pr[sk = skm,c ] = 1/ |K|. This proves the part
(1) of the implication
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Food for Thought

What information is leaked when two messages are encrypted
using the same secret-key in one-time pad?
For example, for two different message (m,m′), their
encryptions are (c , c ′), where c = m ◦ sk and c ′ = m′ ◦ sk
So, we can compute c ◦ inv(c ′) to compute m ◦ inv(m′)
Is any additional information leaked?
How to argue that “no additional information” is leaked?

Lecture 04: Properties of Perfect Security


